Классификация криптографических протоколов

Основные классы прикладных криптографических протоколов:
– протоколы шифрования / расшифрования, конфиденциальные вычисления.
– протоколы идентификации / аутентификации (подтверждение подлинности источника, данных, ключей);
– протоколы аутентифицированного распределения и генераци ключей: пересылка ключей (перешифрование), согласование ключей (протоколы типа Диффи-Хеллмана);
– протоколы электронной цифровой подписи (ЭЦП),
— электронные деньги (система протоколов);
– протоколы голосования;
Протоколы идентификации/аутентификации
В основе протокола идентификации содержится некоторый алгоритм проверки того факта, что идентифицируемый объект (пользователь, устройство, процесс), предъявивший некоторое имя (идентификатор), знает секретную информацию, известную только заявленному объекту, причем метод проверки является, конечно, косвенным, то есть без предъявления этой секретной информации.
Обычно с каждым именем (идентификатором) объекта связывается перечень его прав и полномочий в системе, записанный в защищенной базе данных. В этом случае протокол идентификации может быть расширен до протокола аутентификации, в котором идентифицированный объект проверяется на правомочность заказываемой услуги.
Если в протоколе идентификации используется ЭЦП, то роль секретной информации играет секретный ключ ЭЦП, а проверка ЭЦП осуществляется с помощью открытого ключа ЭЦП, знание которого не позволяет определить соответствующий секретный ключ, но позволяет убедиться в том, что он известен автору ЭЦП.
Протоколы аутентифицированного распределения ключей
Протоколы этого класса совмещают аутентификацию пользователей с протоколом генерации и распределения ключей по каналу связи.
Протокол имеет двух или трёх участников; третьим участником является центр генерации и распределения ключей (ЦГРК), называемый для краткости сервером S.
Протокол состоит из трёх этапов, имеющих названия:
· генерация,
· регистрация
· и коммуникация.
На этапегенерациисервер S генерирует числовые значения параметров системы, в том числе, свой секретный и открытый ключ.
На этапе регистрации сервер S идентифицирует пользователей по документам (при личной явке или через уполномоченных лиц), для каждого объекта генерирует ключевую и/или идентификационную информацию и формирует маркер безопасности, содержащий необходимые системные константы и открытый ключ сервера S (при необходимости).
На этапе коммуникации реализуется собственно протокол аутентифицированного ключевого обмена, который завершается формированием общего сеансового ключа.
На практике криптосистемы с открытым ключом используются для шифрования ключей, а не сообщений.
На это есть две основные причины:
1. Алгоритмы шифрования с открытым ключом в среднем работают в тысячи раз медленнее, чем алгоритмы с симметричным ключом. И хотя темпы роста компьютерной производительности очень высоки, требования к скорости шифрования растут не менее стремительно. Поэтому криптосистемы с открытым ключом вряд ли когда-нибудь смогут удовлетворить современные потребности в скорости шифрования.
2.Алгоритмы шифрования с открытым ключом уязвимы по отношению к криптоаналитическим атакам со знанием открытого текста.
Пусть С=Е(Р),
где С обозначает шифртекст,
Р – открытый текст,
Е – функция шифрования.
Тогда, если Р принимает значения из некоторого конечного множества, состоящего из n открытых текстов. Криптоаналитику достаточно зашифровать все эти тексты, используя известный ему открытый ключ, и сравнить результаты с С.
Ключ таким способом ему вскрыть не удастся, однако открытый текст будет успешно определен.
Чем меньше количество n возможных открытых текстов, тем эффективнее будет атака на криптосистему с открытым ключом.
Например, если криптоаналитику известно, что шифрованию подверглась сумма сделки, не превышающая 1 млн долл., он может перебрать все числа от 1 до 1 000 000.
В большинстве случаев криптографические алгоритмы с открытым ключом применяются для шифрования сеансовых ключей при их передаче абонентам сети связи.
Данный протокол позволяет не хранить ключи в течение неопределенного периода времени до тех пор, пока они не понадобятся в очередном сеансе связи.
Сеансовый ключ можно сгенерировать и отправить по требуемому ; адресу непосредственно перед посылкой сообщения, которое предполагается зашифровать на этом ключе, а потом его сразу уничтожить. Тем самым уменьшается вероятность компрометации сеансового ключа. И хотя тайным ключ также может быть скомпрометирован, риск здесь значительно меньше поскольку тайный ключ используется очень редко – только для однократного зашифрования сеансового ключа.
Протоколы электронной цифровой подписи (ЭЦП)
В основе протокола этого класса содержится некоторый симметричный или асимметричный алгоритм шифрования/расшифрования.
Алгоритм шифрования выполняется на передаче отправителем сообщения, в результате чего сообщение преобразуется из открытой формы в шифрованную. Алгоритм расшифрования выполняется на приёме получателем, в результате чего сообщение преобразуется из шифрованной формы в открытую. Так обеспечивается свойство конфиденциальности.
Для обеспечения свойства целостности передаваемых сообщений симметричные алгоритмы шифрования / расшифрования, обычно, совмещаются с алгоритмами вычисления имитозащитной вставки (ИЗВ) на передаче и проверки ИЗВ на приёме, для чего используется ключ шифрования.
При использованииасимметричных алгоритмов шифрования / расшифрованиясвойство целостности обеспечивается отдельно путем вычисления электронной цифровой подписи (ЭЦП) на передаче и проверки ЭЦП на приёме, чем обеспечиваются также свойства безотказности и аутентичности принятого сообщения.
Алгоритм вычисления ЭЦП на передаче осуществляется с помощью секретного ключа отправителя.
Проверка ЭЦП на приёме осуществляется с помощью соответствующего открытого ключа, извлекаемого из открытого справочника, но защищенного от модификаций.
В случае положительного результата проверки протокол, обычно, завершается операцией архивирования принятого сообщения, его ЭЦП и соответствующего открытого ключа. Операция архивирования может не выполняться, если ЭЦП используется только для обеспечения свойств целостности и аутентичности принятого сообщения, но не безотказности. В этом случае, после проверки, ЭЦП может быть уничтожена сразу или по прошествии ограниченного промежутка времени ожидания.
Подводя итог сказанному, следует еще раз подчеркнуть, что в протоколах обмена сообщениями с использованием симметричного шифрования ключи должны храниться и распределяться между участниками протокола в строжайшем секрете. Ключи являются не менее ценными, чем сама информация, которая шифруется с их использованием, поскольку знание ключей противником открывает ему неограниченный доступ к этой информации
В 1976 г. американские криптологи У. Диффи и М. Хеллман изобрели криптографию с открытым ключом. Они предложили использовать два вида ключей – открытые и тайные. Вычислить тайный ключ, зная только открытый, очень сложно. Человек, владеющий открытым ключом, может с его помощью зашифровать сообщение. Расшифровать это сообщение в состоянии только тот, кто имеет соответствующий тайный ключ. В отличие от симметричной криптосистемы, для алгоритма шифрования с открытым ключом больше подходит сравнение с почтовым ящиком. Опустить почту и этот ящик очень просто, равно как и зашифровать сообщение с применением открытого ключа. А извлечение из почтового ящика находящейся в нем корреспонденции сродни расшифрованию сообщения. Желающего сделать это без ключа вряд ли ожидает легкая работа. Обладатель же ключа откроет почтовый ящик, т. е. расшифрует сообщение, без особого труда.
При зашифровании и расшифровании сообщений в криптосистеме с открытым ключом используется однонаправленная функция с лазейкой. Причем зашифрование соответствует вычислению значения этой функции, а расшифрование – ее обращению. Поскольку и открытый ключ, и сама функция не являются секретными, каждый может зашифровать свое сообщение с их помощью. Однако обратить функцию, чтобы получить открытый текст зашифрованного сообщение, в разумные сроки не сможет никто. Для этого необходимо знать лазейку, т.е. тайный ключ. Тогда расшифрование будет таким же легким, как и зашифрование.
Применение криптографии с открытым ключом позволяет решить проблему передачи ключей, которая присуща симметричным криптосистемам.
Чтобы упростить протокол обмена шифрованными сообщениями, открытые ключи всех абонентов единой сети связи часто помещаются в справочную базу данных, находящуюся в общем пользовании этих абонентов.
Электронные деньги
Протоколы, обеспечивающие реализацию функции электронные деньги должны обеспечивать два основных свойства: невозможность их подделать (очевидно) и неотслеживаемость.
1. Внесетевые платежные системы
Рассмотрим платежные инструменты которые сейчас являются современными, доступными для общего пользования и в последнее время все чаще и чаще соперничают с тем, что мы привыкли называть деньгами в наличной и безналичной форме. Первыми из этих инструментов рассматриваются пластиковые карточки так как они являются наиболее близкими к наличным деньгам, уже достаточно устоявшимися и привычными для пользователей.
Пластиковая карточка — это персонифицированный платежный инструмент, предоставляющий пользующемуся карточкой лицу возможность безналичной оплаты товаров и/или услуг, а также получения наличных средств в отделениях (филиалах) банков и банковских автоматах (банкоматах) /4/. Принимающие карточку предприятия торговли/сервиса и отделения банков образуют сеть точек обслуживания карточки (или приемную сеть).
Таким образом, пластиковые карты можно разделить на два типа:
1) магнитные карты
2) карты памяти.
Магнитные карты
Простейшим видом пластиковых карт является магнитная карта.
Эта пластиковая карточка, соответствующая спецификациям ISO, имеет на обратной стороне магнитную полосу с информацией объемом около 100 байт, которая считывается специальным устройством.
Такие магнитные карточки широко используются во всем мире в качестве кредитных (VISA, MasterCard, Eurocard и т. д.), а также как дебетовые банковские карточки в банкоматах.
§

В финансовой сфере в основном используют вторую. На ней постоянно хранится информация, включающая номер карты или банковского текущего счета, имя и фамилию владельца, срок годности карты (даты начала и конца срока). На магнитной полосе финансовой информации о состоянии счета владельца карты нет.
Существует два режима работы с магнитными картами:
1. В режиме on-line устройство (торговый терминал, электронная касса, банкомат) считывает информацию с магнитной карты, которая по телефонной сети или спецканалу связи передается в центр авторизации карт. Здесь полученное сообщение обрабатывается, а затем в процессинговом центре со счета владельца карты либо списывается сумма покупки (дебетовые карты), либо на сумму покупки увеличивается долг владельца карты (кредитные карты). При этом, как правило, проверяется следующее: не является ли карта утерянной или украденной, достаточно ли средств на счете владельца (для дебетовых карт), не превышен ли лимит кредита (для кредитных).
2. В режиме off-line информация о покупке, сделанной владельцем карточки, никуда не передается, а хранится в торговом терминале или электронной кассе. Для печати чеков используются специальные устройства ручной прокатки, дублирующие выгравированную на карточке информацию о ее владельце.
Банкоматы и торговые терминалы являются устройствами, обеспечивающими функционирование банковских систем самообслуживания на базе пластиковых карт.
Банкомат (Automated Teller Machine, ATM) — это электронно-механическое устройство, предназначенное для выдачи наличных денег по пластиковым карточкам. Банкоматы принято делить на простейшие (cash dispenser) и полнофункциональные, выполняющие и другие операции: прием вкладов, выдачу справок о счетах, перевод денег и пр. В зависимости от предполагаемого места установки банкоматы делятся на уличные и внутренние (для помещений). Уличные банкоматы обычно встраиваются в стены зданий. Банкоматы любого типа включают процессор, дисплей с графическим монитором, клавиатуру для ввода информации, устройства для чтения/записи информации с пластиковой карты и на нее, а также для хранения (кассеты) и выдачи банкнот. Дополнительно банкоматы могут быть снабжены рулонными принтерами, устройствами приема денег и средствами безопасности.
При выдаче денег из банкоматов по обратной связи, как правило, запрашивается так называемый PIN-код — личный 4 — 6-значный код владельца карточки, что служит дополнительной защитой от мошенников. Эта мера безопасности была введена, чтобы предотвратить рост числа краж по пластиковым картам. Дело в том, что при использовании карты с магнитной полосой ее достаточно просто скопировать, но, не зная PIN-кода, нельзя воспользоваться копией в банкомате. Средством, обеспечивающим расчеты в магазине с помощью пластиковых карточек, служат торговые терминалы. Простейшими из них являются механические устройства для прокатки рельефной части пластиковой карты и получения специального чека (слипа), который подписывает клиент. В торговых терминалах PIN-коды обычно не применяют ввиду небольших списываемых сумм.
Карты памяти
Более сложной является так называемая карта памяти.
В карте памяти нет магнитной полосы, зато встроена микросхема, содержащая память и устройство для записи/считывания информации.
Объем памяти колеблется в достаточно широком диапазоне, однако в среднем не превышает 256 байт /5/. Такие карты имеют больше возможностей по сравнению с магнитными, но и стоят несколько дороже.
Карточка применяется в контактном режиме (микросхема физически соприкасается с контактами считывающего устройства). При каждом новом контакте число «разрешенных» звонков в памяти карточки уменьшается на единицу. После того как лимит оплаченных звонков будет исчерпан, карточка перестает функционировать.
Самой мощной из известных сегодня разновидностей «пластиковых денег» является интеллектуальная карта (смарт-карта).
Такие карты содержат встроенный микропроцессор, могут иметь оперативную (для использования в процессе обработки) и постоянную (для хранения неизменяемых данных) память, а также встроенную систему обеспечения безопасности и защиты данных. Различают контактные и бесконтактные (работающие на расстоянии от считывающего устройства) смарт-карты. Смарт-карты используются в самых разных финансовых приложениях, обеспечивая сохранность, целостность и конфиденциальность информации.
Технологии интеллектуальных карт достаточно разнообразны, и возможности применения этих карт во многом зависят от избранной технологии и программно-аппаратных решений.
Одним из наиболее серьезных аргументов в пользу «пластиковых денег» является сокращение оборота наличных средств (рублей и валюты).
Расчеты пластиковыми карточками в рамках INTERNET.
Компания CyberCash, первой предложившая технологию, позволяющую использовать пластиковые карточки для расчетов в Сети . Предлагаемое этой компанией программное обеспечение использует криптозащиту с открытым ключом для конфиденциальной передачи данных о пластиковой карточке от покупателя к торговцу При этом все реальные расчеты и платежи производятся средствами процессинговых компаний без использования Internet.
Цифровые деньги и их характеристики
Для объединения удобства электронных расчетов с конфиденциальностью наличных денег при работе с цифровыми деньгами используется ЭЦП.
Появление цифровой наличности обусловлено необходимостью микроплатежей в Internet.
Основными характеристиками цифровых (виртуальных) денег являются:
Безопасность. Протоколы защиты информации должны обеспечить полную конфиденциальность передачи транзакций, современные алгоритмы цифровой информации, подписи и шифровки вполне пригодны для решения задачи.
Анонимность. Это одна из отличительных характеристик цифровых денег. Предполагается полное отсутствие авторизации транзакций, чтобы исключить всякую возможность проследить платежи частного лица, а значит — вторгнуться в его частную жизнь.
Портативность.Дает возможность пользователю цифровых денег не быть привязанным к своему домашнему персональному компьютеру. Обычным решением является использование электронного бумажника.
Неограниченный срок службы. В отличие от бумажных денег, цифровые не подвержены физическому разрушению.
Двунаправленность.Цифровые деньги можно не только отдавать другому лицу, но и получать. В платежных карточных системах вы обычно отдаете (платите) свои деньги одним способом, а получаете их совершенно другим, исключающим возможность прямой передачи средств между двумя частными лицами.
С точки зрения финансистов и политиков, в цифровых деньгах кроется потенциальный источник новых потрясений цивилизации, так как одним из главных технических аспектов цифровых денег является анонимность.
К настоящему моменту в Internet представлены две технологии, реализующие эту идею.
Компания DigiCash представила технологию сетевых электронных денег ecash в чисто программном варианте.
В ядре технологии лежит прием криптозащиты с открытыми
ключами . Эмитент электронной наличности (банк) имеет, кроме обычной пары ключей, аутентифицирующей его, еще и последовательность пар ключей, в соответствие которым ставятся номиналы «цифровых монет».
Снятие наличных со счета производится следующим образом. В ходе сеанса связи клиент и банк (точнее, их программы-представители) аутентифицируют друг друга. Затем клиент генерирует уникальную последовательность символов, преобразует ее путем «умножения» на случайный множитель (blinding factor), «закрывает» результат открытым ключом банка и отправляет «монету» в банк. Банк «раскрывает» «монету», используя свой секретный ключ, «заверяет» ее электронной подписью, соответствующей номиналу «монеты», «закрывает» ее открытым ключом клиента и возвращает ее ему, одновременно списывая соответствующую сумму со счета клиента. Клиент, получив «монету», «открывает» ее с помощью своего секретного ключа, затем «делит» ее символьное представление на запомненный множитель (при этом подпись банка остается) и сохраняет результат в «кошельке». Транзакция завершена. Теперь банк готов принять эту монету, от кого бы она не поступила (разумеется, лишь один раз).
Использование blinding factor и составляет суть приема «слепой подписи«, в дополнение к обычному методу криптозащиты с открытыми ключами. Благодаря использованию «слепой подписи» банк не в состоянии накапливать информацию о плательщиках, в то же время сохраняя возможность следить за однократным использованием каждой «монеты» данным клиентом и идентифицировать получателя каждого платежа. Такую логику взаимодействия сторон называют «односторонней безусловной непрослеживаемостью» платежей. Покупатель не может быть идентифицирован даже при сговоре продавца с банком. В то же время, покупатель при желании может идентифицировать себя сам, и доказать факт осуществления сделки, апеллируя к банку. Такая логика призвана воспрепятствовать криминальному использованию электронной наличности.
Для вложения наличности клиент просто связывается с банком и отправляет ему полученную «монету», закрыв ее открытым ключом банка. Банк проверяет, не была ли она уже использована, заносит номер в регистр входящих и зачисляет соответствующую сумму на счет клиента.
Сделка между двумя клиентами предполагает лишь передачу «монеты» от покупателя к продавцу, который может либо сразу попытаться внести ее в банк, либо принять ее на свой страх и риск без проверки. Вместе с «монетой» передается некоторая дополнительная информация, которая сама по себе не может помочь идентификации плательщика, но в случае попытки дважды использовать одну и ту же монету позволяет раскрыть его личность.
Перспективы цифровой наличности пока они крайне туманны. Хотя цифровая наличность и является самым многообещающим платежным средством для Интернет, сегодняшние ее возможности разумнее рассматривать как экспериментальную площадку, но в планах ее эмитентов :
— интероперабельность цифровой наличности от разных эмитентов и разведение функций эмиссии/клиринга и банковского обслуживания по разным институтам (это позволит оперировать цифровой наличностью, не открывая счета);
— предоставление доступа к цифровой наличности в различных деноминациях, включая национальные валюты, индексные «корзины» валют, драгоценные металлы и частные деньги;
— non-stop доступ ко всем операциям с цифровой наличностью и со связанными с ней счетами;
— открытие счетов без письменного обращения в банк;
— интероперабельность софтверной наличности со смарт-картами;
— обеспечение (за счет использования мобильных компьютеров или смарт- карт) ее приема в точках физической торговли и кое-что еще.
Некоторые аналитики полагают, что успех ecash — временное явление, и окончательная разработка стандартов безналичных розничных электронных платежей (таких, как SET) и выпуск ориентированных на них продуктов, работающих как в физических, так и в виртуальных средах, низведет место цифровой наличности до достаточно узкой ниши.
Стандарты электронных расчетов
.
Стандарт SET. (Secure Electronic Transactions — безопасные (или защищенные) электронные транзакции). Стандарт SET, совместно разработанный компаниями Visa и MasterCard.
Для того, чтобы совершить транзакцию в соответствии со стандартом SET, обе участвующие в сделке стороны — покупатель и торгующая организация (поставщик) — должны иметь счета в банке (или другой финансовой организации), использующем стандарт SET, а также располагать совместимым с SET программным обеспечением. В таком качестве могут, например, выступать Web-браузер для покупателя и Web-сервер для продавца — оба, очевидно, с поддержкой SET.
Цифровая наличность с математической точки зрения.
«Подпись вслепую«, используемая в системе ecash, относится к так называемым «особым протоколам цифровой подписи», разрабатываемым гражданской и финансовой криптографией.
В современных криптографических системах, в том числе, финансовых, используется так называемая технология «криптографии с открытым ключом«. Надежность этой технологии основана на доказуемой эквивалентности задачи «взлома» криптосистемы какой-либо вычислительно сложной задаче.
Стойкость RSA есть функция сложности разложения произведенияpq на простые множители pи q (эту задачу придется решать тому, кто вознамерится «вычислить» закрытый ключ из открытого). При достаточной длине этих простых чисел (несколько тысяч двоичных разрядов) такое разложение вычислительно невозможно (т.е. требует ресурсов, недоступных в этом мире).
Цифровые деньги и законодательство
Вопросы правовой поддержки (или препятствования) внедрения цифровых денег в форме анонимной или полуанонимной «наличности» могут быть разделены на два аспекта, связанных с:
1) «ограничительным» правом («полицейским регулированием«)
2) «рамочным» правом (прежде всего деловым, финансовым, а также гражданским в широком смысле правом).
«Ограничительное» право. Стойкая криптография.
Одним из проблемных моментов здесь является настойчивое желание ряда правительств ограничить использование стойких криптографических средств. В то время, как для суррогатных сетевых расчетных инструментов криптография является «внешним» довеском («шифровальным средством», «средством аутентификации и идентификации» и т.п.), продвинутые платежные средства (такие, как цифровая наличность или цифровые чеки) фактически, с технологической точки зрения и есть реализация сложных криптографических протоколов.
До недавнего времени (точнее, до середины 70-х гг.) вопроса об использовании фирмами и гражданами криптографии обычно не возникало. Однако, распространение быстродействующей вычислительной техники, с одной стороны, и изобретение Диффи и Хеллманом криптографии с открытым ключом — с другой, лишили правительственные службы (в основном, военные и дипломатические ведомства) прерогативы на использование таких средств, и сделали их технологически доступными практически любой организации и любому частному лицу. Более того, гражданская криптография (и финансовая криптография как ее раздел) стала областью, покрывающей гораздо более широкий круг задач, чем криптография «традиционная». Благодаря открытости обсуждений (в том числе на международном уровне) и тесному взаимодействию академических и коммерческих специалистов, в гражданской криптографии были разработаны такие технологии, появления которых в «закрытой» среде работающих на правительственные службы специалистов пришлось бы ждать века (в частности, «особые протоколы подписи», включая «подпись вслепую”, используемую в ecash).
Такое положение вещей устраивало и устраивает далеко не всех. Правительственные службы многих стран желали бы удержать за собой эксклюзивное право на разработку или, по крайней мере, на санкционирование использования таких технологий. Это желание выражается по-разному. Ситуация в США является наиболее значимой, ведь Америка — ведущий поставщик программного обеспечения в мире. Позиция сменявших друг друга на протяжении 1970-90х гг. администраций трансформировалась от попыток «зажать рот» независимым специалистам до внедрения действующих и по сей день ограничений на стойкость экспортируемого криптографического оборудования и программного обеспечения. Периодически американские спецслужбы (прежде всего, Агентства национальной безопасности — сигнальной разведки и контрразведки США) издают новые законопроекты, в прямой или косвенной форме запрещающие использование стойкой криптографии. (Косвенный запрет может быть наложен путем принуждения производителей оборудования и программного обеспечения к встраиванию в криптографические модули функции так называемого «депонирования закрытых ключей» в одной из многочисленных модификаций. В мае 1997 года был обнародован отчет ведущих гражданских криптографов мира (включая «отца» гражданской криптографии Уитфилда Диффи, одного из разработчиков самой распространенной криптографической технологии RSA Рона Ривеста и др.), в котором показано, что попытка внедрения «депонирования» в любой из возможных модификаций приведет к тому, что криптосистема будет ненадежна и/или будет стоить неприемлемо дорого.)
До сих пор такие попытки не находили поддержки законодателей. С некоторого времени существующим ограничениям уделяет особое внимание и судебная власть США, в частности, не так давно Окружной суд принял решение, что в ряде случаев запрет на экспорт программ может быть расценен как нарушение права на свободу слова, а к Первой поправке в Америке относятся очень серьезно. Однако, предложение о внедрении «депонирования» как на национальном, так и на международном уровне все еще присутствует в ряде правительственных инициатив, включая проект Рамочных условий для глобальной электронной коммерции (A Framework For Global Electronic Commerce, FFGEC).
Европейские страны относятся к таким идеям весьма настороженно В представленной в этом году Европейская инициатива в области электронной коммерции (A European Initiative In Electronic Commerce, EIEC) вопрос с регулированием криптографии трактуется весьма либерально. А на недавно прошедшей в Бонне конференции министров европейских стран «Глобальные информационные сети: раскрытие потенциала» был принят документ (получивший известность как Боннская декларация), в котором прямо говорится, что Министры «будут работать над тем, чтобы обеспечить международную доступность и свободный выбор криптографических продуктов, внося тем самым вклад в безопасность [передачи] данных и конфиденциальность. Если государства предпринимают меры для защиты действительной потребности в законном доступе [к содержимому шифрованных коммуникаций], такие меры должны быть пропорциональны и применятся с учетом применимых правовых гарантий, относящихся к приватности».
В сопутствующей же Боннской декларации Декларации лидеров промышленности сказано: » Для обеспечения надежности и доверия в электронной коммерции и коммуникации Правительства должны допустить широкую доступность стойкой криптографии. Частные лица и фирмы должны быть свободны в выборе технологий шифрования, отвечающих их специфическим требованиям безопасности и приватности коммуникаций. Правительства не должны принимать новых правил, ограничивающих распространение, продажу, экспорт или использование стойкого шифрования, а все существующие правила такого рода должны быть упразднены. В любых обстоятельствах частные лица и корпорации должны иметь возможность локальной генерации, управления и хранения ключей шифрования».
Возможно, взгляды подписавших Декларацию лидеров промышленности уже были бы приняты официальной Европой в полном объеме, однако этому препятствует Франция со своей особой позицией. Франция и Россия остаются единственными странами Севера, чья исполнительная власть продолжает настаивать на своей монополии на криптографические технологии. Попытки провести соответствующие законы в других европейских государствах оказались неудачными.
Во Франции запрещается использование зарубежных криптографических средств (за исключением используемых в международных платежных системах). Неофициально власти давали понять, что преследовать частных лиц-пользователей стойкой криптографии они не будут.
«Рамочное» право.
Главный тренд сегодня — это законы, закрепляющие существенную либерализацию телекоммуникационного рынка. С появлением цифровой обработки сигналов (представление, хранение, передача и обработка любых сигналов в цифровой форме) возникла концепция «конвергенции» — необходимого технологического объединения телефонных, телевизионных, почтовых, компьютерных, пейджинговых, радио- и других информационных сервисов.
Появление нового регулирования, в полной мере отвечающего всемирному переходу на цифровую обработку сигналов, крайне важно, ибо старая нормативная база, разделяющая телефонный, телевизионный, компьютерный и другие виды информационного бизнеса, препятствует внедрению новых технологий передачи данных (например, доставки телевизионного изображения по обычному телефонному проводу или доступа в Internet по телевизионному кабелю).
В США новое законодательство принято уже в 1996 году, в Европе принято в 1998 году. В России же полным ходом идет становление законодательства в этой области, которое, похоже, будет воспроизводить старинную законодательную конструкцию, возникшую в доцифровую эру.
Законы о защите персональных данных и их экспорте-импорте принимались в виде международных конвенций еще с 1985 года. Тогда они в целом базировались на концепции прав человека и были крайне расплывчаты. Существенным же шагом вперед стало принятие Европейским союзом в июле 1995 года вполне конкретной Директивы по защите персональных данных и свободном обмене ими. Эта директива кроме обязательств по защите персональных данных физических лиц для фирм, работающих с этими данными, вводит ограничения на экспорт персональных данных из Европы в страны, в которых не приняты законы об адекватной защите таких данных.
В то же время директива гарантирует странам, поддерживающим режим защиты персональных данных, свободный обмен ими. Если в России не будут приняты законы о защите персональных данных и их экспорте-импорте, то:
— граждане России будут иметь меньше прав, чем граждане Европы и США;
— свободный обмен информацией с иностранными государствами будет
существенно затруднен.
Традиционные законы о копирайте (законы об интеллектуальной собственности) трещат сейчас по всем швам ввиду появления таких «странных» объектов их применения, как базы данных, программное обеспечение, пользовательские интерфейсы и т. п. В США сейчас эта область в основном закрывается большим количеством прецедентов. С другой стороны, Европа и WIPO (World Intellectual Property Organisation) разрабатывают свои версии законов на этот счет. Особую пикантность являют случаи, где копирайт «не работает», — это правительственная и другая публичная информация. Например, в США по закону любая федеральная информация не имеет копирайта — для того чтобы облегчить их распространение. В России подобные проблемы пока не обсуждаются, но уже есть закон, регулирующий работу с электронными базами данных. Этот закон просто ужасен.
Раскрытие информации — это общая проблема для ведомств, сегодня и не подозревающих об общности их проблем. Некоторые виды информации должны раскрываться для широкой публики. В их числе находится как государственная информация (базы данных, реестры, законодательство и т. п.), так и частная (информация о финансовых рынках). В США и Европе изданы нормативные акты, предписывающие государственным органам полное раскрытие всей публичной (несекретной) информации о своей деятельности в Internet. На финансовых рынках создаются полностью электронные системы раскрытия информации. Для них особенно важно регулировать появление посредников, добавляющих стоимость. В России известны только две подобные инициативы — раскрытие информации ФКЦБ России и раскрытие законодательной информации. Заметим, что обычная публикация информации никакого отношения к раскрытию не имеет: система раскрытия информации определяется как условия, порядок и процедуры взаимодействия регулирующих органов, раскрывателей информации и других организаций, имеющих целью обеспечение возможности нахождения конкретной раскрываемой информации, а также публичного и свободного доступа к ней в регламентированное время.
Криптозащита традиционно рассматривалась как потенциально опасная вещь. Сейчас законодательство, ограничительно регулирующее использование шифрования и кодирования, начало серьезно мешать развитию внутренней и международной торговли (прежде всего это касается электронных систем «поставщик-клиент», работающих в Internet). Под давлением новых технологий, а также требований публики картина начала меняться в конце 1996 года, когда в США появился прецедент, толкующий ограничение на публикацию алгоритмов криптозащиты как ограничение свободы слова. В России эти правовые проблемы не решены (есть нормативная база, ориентированная на ФАПСИ), поэтому рынок средств защиты информации практически пуст, импортировать дешевые (иногда даже бесплатные) и надежные средства защиты информации пока невозможно. Теоретические работы в этой области права не ведутся. Поэтому в настоящее время в России полноценная легальная электронная торговля и полноценные легальные электронные финансовые рынки, пожалуй, невозможны юридически, хотя вполне возможны технологически.
Современные технологии предлагают новые способы анонимной организации денежных расчетов (разные виды «электронных кошельков» в отличие от электронного перечисления безналичных денег — технология существенно отличается от технологий кредитных и дебетных карточек). Сегодня западные законодатели активно дискутируют о том, хорошо это или плохо. Проекты анонимных электронных денежных расчетов существуют только 2-3 года, поэтому никакой законодательной практики на этот счет нет. В России же эти проекты практически неизвестны.
С появлением киберпространства серьезнейшей проблемой стало определение юрисдикции: традиционные юридические нормы для определения той страны, чье законодательство необходимо использовать, практически перестали работать. С другой стороны, появляются новые юридические концепции (например, «договорная юрисдикция провайдеров») и подходы (например, опубликована Декларация независимости киберпространства).
С проблемой юрисдикции тесно связана и другая проблема: совершенно непонятно, как осуществлять правоприменение. Компьютерные сети спроектированы так, чтобы выживать даже в случае атомной войны, и уж во всяком случае правоприменение в любой стране можно легко обойти, используя доступ к сети из других стран. Более того, часто невозможно «вычислить» преступника: киберпространство предполагает другие способы как нападения, так и защиты, нередко основанные на сверхсовременных технологиях. Концепция сочетания организационной и технологической самообороны и страхования в случае прорыва этой самообороны гораздо более приемлема для современных информационных технологий, чем система с централизованной «информационной» полицией.
Законодательные подходы к этим проблемам в мире только-только начинают обсуждаться — в основном в форме обучения законодателей реалиям нового мира и обсуждения возникающих судебных прецедентов. В России пока не пришли даже к пониманию этих проблем.
Свобода слова и выражения в новом обществе должна определяться по-новому, ибо появление компьютерных сетей требует пересмотра традиционных норм, бывших эффективными для печатных и традиционных электронных форм. Концепция «вещания», что предусматривает наличие географического центра такого вещания, полностью непригодна в компьютерных сетях, где не только нет географических границ, но и любой может быть как «читателем/зрителем», так и «издателем/станцией». Сегодня идет очень активная дискуссия на эту тему. В США в 1996 году было принято (а затем отменено) новое законодательство, предусматривающее минимальную цензуру.
Нормы по электронным документам. Существует модельный закон ООН по электронным документам. Он предназначен для закрепления функционально эквивалентного подхода к электронным документам (то есть такого подхода, когда выявляются функции бумажного документа и к каждой функции подбирается эквивалентный по функциональности механизм из области информационных технологий). Эти модельные нормы далее должны уточняться национальными законодательствами. Последний вариант модельного закона ООН вышел в 1996 году. Следующим в этой серии будет модельный закон об особенностях использования электронного документооборота в морской торговле. В России сейчас создается рабочая группа в Думе, которая должна заняться проектом закона об электронном документе.
Протоколы голосования
Протоколы голосования применяются для проведения различных выборов. В частности, с их помощью гарантируется проверяемость правильности подсчета голосов.
Системы электронного голосования. В США введением общенациональной системы электронного голосования «из дома«занимается Федеральная комиссия по связи.
Возникает множество вопросов не только по законодательному обеспечению и легитимности результатов такого голосования, но и по законодательному обеспечению последствий принятия таких технологий. Если издержки проведения национальных референдумов или сбора миллионов подписей будут близки к нулю, то это означает существенное изменение политической организации общества — репрезентативная демократия будет гораздо ближе к прямой демократии. В таком мире люди еще не жили, и его законодательное обеспечение еще не отработано.
Если рассмотреть любые типы проведения голосования, то можно выделить так называемые права голоса — новый тип (нефинансовых) инструментов, представляющих собой односторонние обязательства эмитента по реализации результатов подсчета голосов, — относится ли это к национальным и местным референдумам, выборам в госорганы всех уровней, выборам в политических партиях или голосованию на общих собраниях акционерного общества.
При принятии парадигмы прав голоса как инструментов можно использовать единую для этих инструментов учетную структуру, в том числе — технологию и инфраструктуру регистраторов и депозитариев рынка ценных бумаг. Регулирование, основанное на этой схеме, позволит путем введения конкурентного предоставления услуг в этой области существенно снизить общественные издержки на проведение голосования, особенно голосования большого масштаба.
Задачи, решаемые криптографическими протоколами:
· Обеспечение различных режимов аутентификации
· Генерация, распределение и согласование криптографических ключей
· Защита взаимодействий участников
· Разделение ответственности между участниками
Виды криптопротоколов:
–
§

Предположим, что два участника Протокола хотят обмениваться секретными сообщениями по каналу связи, не защищенному от подслушивания.
Естественно. им придется воспользоваться шифрованием.
Однако чтобы первый участник Протокола успешно зашифровал свое сообщение второму участнику Протокола, а тот, получив это сообщение, смог его расшифровать, они должны действовать в соответствии со следующим Протоколом (пошагово):
1. Оба участника Протокола уславливаются о том, какой криптосистемой они будут пользоваться.
2. Оба участника Протокола генерируют ключи для шифрования и расшифрования своих сообщений и затем обмениваются ими.
3. Первый участник Протокола шифрует сообщение с использованием криптографического алгоритма и ключа, о которых он заранее договорился со вторым пользователем .
4. Первыйучастник Протокола отправляет зашифрованное сообщение второму пользователю.
5. Второй участник Протокола расшифровывает полученное сообщение, применяя тот же криптографический алгоритм и ключ, которыми пользовался первый пользователь.
Если Злоумышленник имеет возможность перехватывать сообщения, которые передают друг другу оба участника Протокола, он может попытаться прочесть эти сообщения. Если и первый и второй участники Протокола используют стойкий алгоритм шифрования. — они в безопасности.
Однако Злоумышленник может оказаться в состоянии подслушивать за первым и вторым участниками Протокола, когда они выполняют шаг 1ишаг 2 Протокола.
Поэтому стойкая криптосистема не должна опираться на сохранение в тайне алгоритма шифрования.
Необходимо, чтобы ее стойкость определялась одной только длиной секретного ключа.
Тогда первый и второй участники Протокола могут условиться, каким шифром они будут пользоваться, ничуть не заботясь о том, что их подслушает активный мошенник. Тем не менее, шаг 2 Протокола (генерация ключей) все равно должен выполняться ими в обстановке строжайшей секретности.
Требуется, чтобы свои сгенерированные ключи оба участника Протокола хранили в секрете до, во время и после процесса выполнения всех шагов протокола.
Иначе злоумышленник сможет прочесть всю их шифрованную переписку.
Что касается Злоумышленника, то в зависимости от преследуемых целей он может действовать по-разному. Если Злоумышленник прервет связь между Первым и вторым участником Протокола, они будут не в состоянии обмениваться сообщениями. Злоумышленник может заменить шифрованное сообщение, посланное первым участником Протоколана свое собственное. Попытавшись расшифровать поддельное сообщение,второй участник Протокола вместо осмысленного открытого текста получит абракадабру, и решит, что первый участник Протокола не слишком серьезно отнесся к шифрованию своего сообщения или что при передаче оно было просто искажено.
Хуже, если Злоумышленник узнает ключ, которым пользуютсяпервый и второй участники Протокола. Тогда он сможет зашифровать любое сообщение и отправить его второму участнику Протокола от имени первого участника Протокола а у второго участника Протокола не будет возможности распознать подделку.
Если первый участник Протокола вознамерится навредить второму участнику Протокола, тот будет не в силах ему помешать. Например, первый участник Протокола может заставить второго участника Протокола отказаться от обмена сообщениями. Для этого первому участнику Протокола достаточно передать копию ключа второму участнику Протокола с условием, что он опубликует открытые тексты его сообщений в газете для всеобщего обозрения. Это значит, что, используя приведенный выше Протокол, первый и второй участники Протокола должны полностью доверять друг другу.
Подводя итог сказанному, следует еще раз подчеркнуть, что в Протоколах обмена сообщениями с использованием симметричного шифрования ключи должны храниться и распределяться между участниками протокола в строжайшем секрете.
Ключи являются не менее ценными, чем сама информация, которая шифруется с их использованием, поскольку знание ключей противником открывает ему неограниченный доступ к этой информации.
Управление открытыми ключами
Благодаря асимметричной криптографии проблема распределения секретных ключей, рассмотренная нами в лекции 8, была решена, вернее, ликвидирована, однако, появилась новая проблема – проблема подтверждения подлинности открытых ключей. Эта проблема заключается в том, что, получая открытый ключ некоторого абонента А, пользователь должен быть уверен, что ключ принадлежит именно абоненту А, а не кому-то другому.
Дело в том, что в исходном виде система распределения ключей, предлагавшаяся Диффи и Хеллманом, давала возможность проведения различного рода атак, основанных на перехвате и подмене открытых ключей абонентов. Так, например, в лекции 11 нами была рассмотрена атака «человек-в-середине», позволявшая злоумышленнику осуществлять полный контроль над передаваемой в системе связи информацией.
Большую роль в решении проблемы сертификации открытых ключей сыграло создание цифровой подписи. В системах связи с большим количеством абонентов, применяющих асимметричные криптосистемы, стали использовать специальные организационные структуры, выполняющие функции управления ключами абонентов и занимающиеся сертификацией открытых ключей.
Эти организационные структуры играют роль доверенной третьей стороны и заверяют открытые ключи абонентов своими цифровыми подписями. Таким образом, в распределенных системах связи, использующих криптосистемы с открытыми ключами, вводится понятие инфраструктуры открытых ключей (Public Key Infrastructure — PKI), включающей комплекс программно-аппаратных средств, а также организационно-технических и административных мероприятий, обеспечивающих абонентам системы связи необходимый сервис для управления их открытыми ключами.
Основным элементом инфраструктуры открытых ключей является центр сертификации ( удостоверяющий центр ) (Certification authority, CA), который обеспечивает контроль за выполнением всех процедур, связанных с изготовлением, регистрацией, хранением и обновлением ключей, сертификатов открытых ключей и списков отозванных сертификатов.
Сертификат представляет собой информацию, заверенную цифровой подписью центра, и включающую открытый ключ и другие данные об абоненте. Такими данными являются, например, идентификатор алгоритма электронной подписи, имя удостоверяющего центра, срок годности сертификата, имя пользователя, которому принадлежит сертификат. Международный стандартISO X.
Сертификат обладает следующими свойствами:
Так как сертификаты не могут быть подделаны, их можно опубликовать, поместив в общедоступный справочник.
Каждый пользователь системы связи может быть владельцем одного или нескольких сертификатов, сформированных удостоверяющим центром. Открытый ключ абонента может быть извлечен из сертификата любым пользователем, знающим открытый ключ администратора удостоверяющего центра.
В распределенных системах связи с большим числом абонентов может быть создано несколько центров сертификации. Центры сертификации объединяются в древовидную структуру, в корне которой находится главный удостоверяющий центр. Главный центр выдает сертификаты подчиненным ему центрам сертификации, тем самым заверяя открытые ключи этих центров.
Открытый ключ пользователя формируется на основе закрытого ключа. Каждый пользователь должен хранить свой закрытый ключ таким образом, чтобы никто другой не смог узнать его значение.
Если же у владельца ключа есть основания полагать, что ключ стал известен кому-либо еще, то такой закрытый ключ считается скомпрометированным, и потерпевший, допустивший компрометацию своего ключа, должен оповестить всех остальных абонентов системы связи, что его открытый ключ следует считать недействительным.
Сертификаты открытых ключей имеют период действия, однако любой сертификат может быть выведен из обращения (отозван) до истечения этого периода, если соответствующий сертификату секретный ключ пользователя скомпрометирован или скомпрометирован ключ удостоверяющего центра, использованный при формировании сертификата. Удостоверяющий центр должен информировать своих абонентов об отозванных сертификатах.
При такой организации администратор удостоверяющего центра не имеет доступа к секретным ключам пользователей, а значит, и к защищаемой с их помощью информации. Администратор может лишь подменить в справочнике сертификатов открытые ключи одного из абонентов или включить фиктивного абонента, от его имени войти в контакт и получить предназначенное ему сообщение. Для исключения таких конфликтов может применяться следующая схема подготовки и рассылки ключей.
- Администратор удостоверяющего центра генерирует пару (закрытый ключ, открытый ключ) и сообщает свой открытый ключ всем своим абонентам.
- Пользователь А выбирает закрытые ключи для выполнения операций шифрования и формирования ЭЦП, а также вычисляет соответствующие открытые ключи.
- Открытые ключи шифрования и подписи зашифровываются открытым ключом администратора и предъявляются в удостоверяющий центр для регистрации.
- Администратор удостоверяющего центра проверяет (расшифровывает своим закрытым ключом) открытые ключи пользователя А; изготавливает и подписывает сертификаты открытых ключей пользователя А и помещает их в справочники открытых ключей шифрования и открытых ключей подписей. Каждый из справочников предоставляется в распоряжение абонентов удостоверяющего центра.
- Любой пользователь системы может извлечь из справочника сертификат необходимого абонента, проверить подпись администратора под сертификатом (расшифровать его открытым ключом администратора) и извлечь открытый ключ.
Такая схема подготовки и распределения открытых ключей выглядит несколько тяжеловесной, однако она защищает абонентов системы связи от разнообразных конфликтных ситуаций. На практике рассмотренная схема дополняется метками времени в цифровых подписях, проверками дополнительных полей в сертификатах (например, срока действия) и другими проверками, повышающими безопасность функционирования всей системы в целом.
Необходимо отметить, что в настоящее время в связи с широким использованием асимметричных криптоалгоритмов для банковских, платежных и других систем инфраструктура открытых ключей постоянно совершенствуется.