средства криптографического преобразования информации и криптографические методы защиты информации

СРЕДСТВА КРИПТОГРАФИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ И КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ ЭЦП
Содержание
  1. Защита криптографической информации в коммерческой деятельности
  2. Шифрование
  3. Требования при использовании СКЗИ
  4. Классы криптографической защиты информации
  5. Симметричная криптография
  6. Асимметричная криптография
  7. Хеш-функции
  8. Алгоритмы электронной подписи
  9. Криптографическое преобразование информации
  10. На тему «Криптографическое преобразование информации»
  11. Особенности использования булевых функций для организации криптографических преобразований потоковой информации
  12. Блочные шифры
  13. А что за границей?
  14. Скремблеры
  15. Использование шифровальных криптографических средств в современном мире
  16. Режимы функционирования блочных шифров
  17. Еще термины по предмету «Информационная безопасность»
  18. Аттестация автоматизированной системы в защищенном исполнении
  19. Защита информации от непреднамеренного воздействия
  20. Работа СКЗИ и их применение
  21. Симметричное шифрование
  22. Перестановочные алгоритмы
  23. Области использования электронной подписи
  24. Виды СКЗИ для электронной подписи — программные и аппаратные СКЗИ
  25. Правовое регулирование применения криптографических средств в РФ
  26. Повышай знания с онлайн-тренажером
  27. Алгоритм DES
  28. Алгоритм AES
  29. Правовое регулирование криптографической защиты информации в РФ
  30. Сертифицированные криптографические средства защиты информации в России
  31. Класс КС1
  32. Класс КС2
  33. Класс КС3
  34. КВ1 и КВ2
  35. Класс КА
  36. Что такое алгоритм RSA?
  37. Что такое алгоритм DSA?

Защита криптографической информации в коммерческой деятельности

Современные компании хранят свою личную и конфиденциальную информацию онлайн в облачном хранилище с непрерывным подключением к сети.

Именно поэтому они включают шифрование в свои планы по обеспечению безопасности данных в облаке. Конфиденциальность и безопасность данных важны для компаний, независимо от того, где они хранятся.

Для защиты данных применяются различные устройства шифрования, а также приборы для защиты телефонной связи. С КЗИ применяется в офисном оборудовании, таком как факсы, телексы или телетайпы. Кроме того, в коммерческой отрасли используется система электронных подписей, упомянутая выше.

Шифрование

Шифрование — это процесс преобразования исходного сообщения M (называемого открытым текстом) в форму M’ (зашифрованный текст или шифртекст). При этом провести обратное преобразование M’ в M возможно только обладая некоторой дополнительной информацией, называемой ключом.

ЭЦП:  ПЛАГИН ДЛЯ НАЛОГ РУ СКАЧАТЬ И ФЕДЕРАЛЬНАЯ ИНСТРУКЦИОННАЯ АДРЕСНАЯ СИСТЕМА

Шифрование нередко путают с кодированием, но между двумя этими процессами есть значительная разница. Кодирование также представляет собой преобразование исходного сообщения в другую форму, но цель этого преобразования — удобство обработки или передачи сообщения. Например, символьный текст кодируется в двоичный (каждый символ заменяется последовательностью нулей и единиц) для того, чтобы его можно было хранить и обрабатывать в ЭВМ, а двоичный текст преобразовывается в последовательность электрических импульсов, для того, чтобы стала возможной его передача по кабелю. Цель шифрования — противоположная. Текст зашифровывается для того, чтобы посторонние лица, не обладающие ключом, не могли бы воспринять заложенную в нем информацию, даже располагая этим зашифрованным текстом. Таким образом, шифрование является средством обеспечения конфиденциальности информации.

Алгоритмы шифрования делятся на две большие группы:

Требования при использовании СКЗИ

Федеральная служба безопасности (ФСБ) России является регулирующим органом по вопросам информационной безопасности на территории Российской Федерации.

Федеральный закон № 149 (2008 г.) устанавливает типовые требования для обеспечения безопасности и организации работы криптографических средств, которые используются для материалов, не содержащих государственную тайну и используемых в процессе обработки персональных данных.

Закон регулирует отношения, возникающие в связи с:

Документ содержит определение понятий информации, прав доступа к ней, возможного ее носителя, его обязанностей и возможностей и допустимых действий с информацией.

Он также описывает особенности государственного регулирования в сфере информационных технологий и определяет ответственность за нарушения в этой сфере.

Следует отметить, что информация в этом законе регулярно обновляется в соответствии с мировыми тенденциями в области информационной безопасности, несмотря на то, что документ был принят в 2008 году.

Классы криптографической защиты информации

Для определения класса криптозащиты компьютерных систем производится оценка возможностей злоумышленников (модель нарушителя) взломать секретные материалы (модель угроз).


СРЕДСТВА КРИПТОГРАФИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ И КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

Классы криптографической защиты информации

К начальным классам защиты относятся КС1, КС2, КС3.

Только до 2.10

Чтобы получить файл, укажите e-mail:

Введите e-mail, чтобы получить доступ к документам

Подтвердите, что вы не робот,указав номер телефона:

Введите телефон, чтобы получить доступ к документам

Уже скачали 52300

Есть и более высокие классы, на которые предположительно направлены атаки выше сложности, чем в предыдущих:

Более точные описания классов есть в законодательных и нормативных документах по вопросам информационной безопасности и сохранности данных.

Разработка безопасной IT-инфраструктуры подразумевает применение ТС, ПО и криптографических мер защиты информации, которые будут защищать объект согласно требуемому классу.

Классы безопасности у разных компонентов отличаются друг от друга, потому что для установки необходимого уровня защиты берут в расчёт особенности информации и модель нарушителя в каждой конкретной ситуации.


СРЕДСТВА КРИПТОГРАФИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ И КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

То, к какому классу будет относиться защита, становится ясно только после сертифицированных испытаний и подтверждения необходимыми документами. Существуют такие виды деятельности, для которых обязательно нужен сертификат соответствия классу КЗИ как для частей IT-инфраструктуры, так и в целом.

Криптографию можно разделить на три различных типа:

Симметричная криптография

Криптография с секретным ключом, или симметричная криптография, использует один ключ для шифрования данных. И для шифрования, и для дешифровки в симметричной криптографии используется один и тот же ключ. Это делает данную форму криптографии самой простой.

Криптографический алгоритм использует ключ в шифре для шифрования данных. Когда к данным нужно снова получить доступ, человек, которому доверен секретный ключ, может расшифровать данные.

Криптография с секретным ключом может использоваться как для данных, которые передаются в мети на данный момент, так и для данных в состоянии покоя — на носителе. Но обычно она используется только для данных в состоянии покоя, поскольку передача секрета получателю сообщения может привести к компрометации.

Пример алгоритмов симметричной криптографии:


СРЕДСТВА КРИПТОГРАФИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ И КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

Асимметричная криптография

Криптография с открытым ключом, или асимметричная криптография, использует два ключа для шифрования данных. Один из них используется для шифрования, а другой ключ расшифровывает сообщение. В отличие от симметричной криптографии, если один ключ используется для шифрования, этот же ключ не может расшифровать сообщение, для этого используется другой ключ.

Один ключ хранится в тайне и называется «закрытым ключом», а другой — «открытый ключ» — находится в открытом доступе и может быть использован любым человеком. Закрытый ключ должен оставаться только у владельца. Открытый ключ может быть передан другому человеку.

Примеры алгоритмов асимметричной криптографии:


СРЕДСТВА КРИПТОГРАФИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ И КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

Хеш-функции

Хеш-функции — это необратимые, односторонние функции, которые защищают данные ценой невозможности восстановить исходное сообщение.

Хеширование — способ преобразования заданной строки в строку фиксированной длины. Хороший алгоритм хеширования будет выдавать уникальные результаты для каждого заданного входа. Единственный способ взломать хеш — попробовать все возможные входы, пока не получится точно такой же хеш. Хеш может использоваться для хеширования данных (например, паролей) и в сертификатах.

Примеры алгоритмов хэширования:

Алгоритмы электронной подписи

Цифровые подписи используются для аутентификации и проверки подлинности документов и данных, предотвращая их цифровую модификацию или подделку во время передачи официальных документов.

Обычно система с асимметричным ключом шифрует данные с помощью открытого ключа и расшифровывает их с помощью закрытого ключа. Но порядок, который используется для шифрования цифровой подписи, обратный.

Цифровая подпись шифруется с помощью закрытого ключа и расшифровывается с помощью открытого ключа. Поскольку ключи связаны между собой, расшифровка с помощью открытого ключа подтверждает, что соответствующий закрытый ключ был использован для создания подписи документа. Это способствует проверке происхождения подписи.

Криптографическое преобразование информации

👍 Проверено Автор24

преобразование информации с использованием одного из криптографических алгоритмов.

На тему «Криптографическое преобразование информации»

Статья от экспертов

Особенности использования булевых функций для организации криптографических преобразований потоковой информации

Рассмотрены характеристики булевых преобразований при использовании для защиты потоковой информации. Приведены сравнительные результаты исследования программной и аппаратной реализации, отмечены преимущества и особенности рассматриваемых преобразований.

Блочные шифры

В статье автором поднимаются вопросы защиты информации в системах управления.

На территории Российской Федерации регулирующим органам в вопросах информационной безопасности является ФСБ России. Типовые требования обеспечения и организации работы криптографических средств для материалов, не содержащих государственную тайну и используемых в процессе обработки персональных данных, были утверждены в ФЗ-149 (2008 г.).

В нем закреплен свод правил для урегулирования создания криптографических средств защиты информации и их применения.

Закон регулирует отношения, возникающие при:

Также этот закон включает:

Стоит отметить, что, несмотря на срок выпуска документа, информация в нем регулярно обновляется в соответствии с актуальными мировыми тенденциями в рамках информационной безопасности. Подробнее с видом документа можно ознакомиться по ссылке.

А что за границей?

Одним из примеров требований по защите информации на Западе можно назвать стандарты GO-ITS (The Government of Ontario Information Technology Standards). Согласно им, криптографические материалы должны быть надежно защищены, включая создание, хранение, распространение, использование, отзыв, уничтожение и восстановление ключей.

Требования подразделяются на различные области:

Образование и обучение. Технический персонал, который разрабатывает, внедряет или управляет системами, должен быть осведомлен о требованиях к криптографии в соответствии со стандартом.

Информация в хранилище. Чувствительная информация должна быть зашифрована при хранении или храниться в оперативном режиме с использованием безопасных хэш-функций. Зашифрованные конфиденциальные данные, хранящиеся более двух лет, должны быть зашифрованы. Если ответственность за зашифрованные данные передается другой организации, данные должны быть зашифрованы повторно, с помощью нового ключа.

Мобильные устройства, такие как смартфоны, планшеты, съемные носители, портативные компьютеры, которые обрабатывают или хранят конфиденциальные данные, должны шифровать все хранилище устройства. Если конфиденциальные данные хранятся на настольных компьютерах, эти данные должны быть зашифрованы. Чувствительные данные должны быть зашифрованы на уровне столбцов или полей/ячеек данных перед записью в хранилище данных.

Безопасность коммуникаций. Чувствительная информация должна быть зашифрована при передаче с помощью соответствующих средств. Целостность конфиденциальных данных должна проверяться с помощью утвержденного кода аутентификации сообщения или цифровой подписи. Цифровые подписи должны использовать точную временную метку из доверенного источника времени.

Развертывание криптографии. Все приложения криптографии должны использовать генератор случайных чисел или генератор псевдослучайных чисел; проверять действительность сертификатов и использовать только действительные сертификаты. Приложения должны безопасно удалять расшифрованную информацию, хранящуюся в кэше или временной памяти, сразу после завершения соответствующей деятельности. Приложения, обрабатывающие конфиденциальные данные и имеющие к ним доступ, должны проходить тестирование и оценку безопасности (STE) перед внедрением.

Защита криптографических материалов. Доступ к криптографическим материалам должен быть ограничен авторизованными пользователями, приложениями или службами. Криптографические ключи должны быть защищены в соответствии с чувствительностью информации, которую они защищают. По возможности ключи должны генерироваться с помощью защищенного программного модуля или аппаратного модуля безопасности. Для генерации ключей, защищающих конфиденциальную информацию, модули должны быть локальными.

Скремблеры

Одним из распространенных потоковых алгоритмов шифрования является скремблер.
Скремблерами называются программные или аппаратные реализации алгоритма, позволяющего шифровать побитно непрерывные потоки информации. Сам скремблер представляет из себя набор бит, изменяющихся на каждом шаге по определенному алгоритму. После выполнения каждого очередного шага на его выходе появляется шифрующий бит – либо 0, либо 1, который накладывается на текущий бит информационного потока операцией XOR.

Рассмотрим пример простого скремблера. Он задается двумя битовыми последовательностями равной длины, одна из которых называется ключом (начальной последовательностью), а вторая собственно скремблером (часто вторая последовательность является фиксированной для конкретной аппаратной или программной реализации, а ключ выбирается как в обычном симметричном шифровании). Чем больше длина ключа (и скремблера), тем более надежным будет алгоритм.

Начальная последовательность (ключ) накладывается на скремблер, представляющий собой маску: выбираются только те биты последовательности, позициям которых соответствует единица в скремблере. Далее выбранные биты складываются между собой операцией XOR. Получается новый бит, который записывается в начало (слева) ключа. Последний (правый) бит ключа становится первым символом кодирующей последовательности и отбрасывается. Таким образом, происходит сдвиг ключа и генерация одного бита. Этот бит накладывается на первый бит исходного текста операцией XOR и получается первый бит зашифрованного текста. После этого цикл повторяется.

Пусть необходимо зашифровать сообщение 00111 скремблером 101 с ключом 011. Вычисляется сумма по модулю 2 первого и третьего бита ключа: 0

1 = 1. Этот бит становится новым первым битом ключа, а последний бит ключа

становится битом шифрующей последовательности. Вычисляем первый бит зашифрованного текста: 1

Рис. 9. Скремблирование последовательности 00111 скремблером 101 с ключом 011

Использование шифровальных криптографических средств в современном мире

Защита информации и персональных данных с помощью криптографии является неотъемлемой частью любой информационной деятельности. На сегодняшний день на рынке существует множество инструментов для решения этой задачи, включая КриптоПро CSP, Signal-COM CSP, РуТокен ЭЦП и другие программы, которые рассматриваются в данном материале.

Создание и использование средств криптографической защиты информации (СКЗИ) строго контролируется Федеральной службой безопасности Российской Федерации (ФСБ РФ) и Федеральной службой по техническому и экспортному контролю (ФСТЭК) . Любая информационная система должна быть согласована с этими органами.

Раскрываюсь больше как автор, также тут —

Режимы функционирования блочных шифров

Симметричные алгоритмы шифрования можно разделить на две категории: блочные и потоковые. В потоковых алгоритмах символы (байты или биты) исходного текста шифруются последовательно. Классическим примером является одноразовый блокнот или шифр простой замены. В блочных шифрах единицей шифрования является блок (последовательность бит фиксированной длины), который преобразуется в блок зашифрованного текста такой же длины. Как отмечалось выше, большинство современных симметричных алгоритмов шифрования относятся к категории блочных шифров.

Существует четыре основных режима работы блочных шифров, которые предназначены для их оптимального применения в самых различных областях.

Три основных типа криптографии включают в себя криптографию с секретным ключом, криптографию с открытым ключом и хеш-функции.

Симметричная криптография, также известная как криптография с секретным ключом, использует один и тот же ключ для шифрования и расшифровки данных. Это простой способ защиты информации.

Криптографический алгоритм использует ключ для шифрования данных. Если нужно получить доступ к данным, то тот, кому доверен секретный ключ, может расшифровать данные.

Криптография с секретным ключом может использоваться как для передачи данных в режиме реального времени, так и для защиты данных в состоянии покоя, на носителе. Однако, как правило, она используется только для защиты данных в состоянии покоя, поскольку передача секретного ключа может привести к его компрометации.

Примеры алгоритмов симметричной криптографии включают AES, DES и Шифр Цезаря.

Асимметричная криптография, также известная как криптография с открытым ключом, использует пару ключей для шифрования и расшифровки данных. Один ключ, называемый «открытым ключом», используется для шифрования данных, а второй ключ, «закрытый ключ», используется для их расшифровки.

В отличие от симметричной криптографии, где один и тот же ключ используется для шифрования и расшифровки, в асимметричной криптографии эти функции выполняются разными ключами.

Закрытый ключ является секретным и должен быть известен только владельцу, в то время как открытый ключ может быть передан любому человеку. Поэтому асимметричная криптография обеспечивает более высокий уровень безопасности и конфиденциальности, чем симметричная криптография.

Существуют различные алгоритмы асимметричной криптографии, такие как ECC, Протокол Диффи-Хеллмана и DSS, которые используются для шифрования данных и обеспечения безопасности в интернет-передаче данных.

Хеш-функции — это функции, которые используются для преобразования данных в зашифрованный формат фиксированной длины. Они обычно используются для защиты данных путем создания уникальной «отпечатков» данных, которые нельзя восстановить исходное сообщение. Хороший алгоритм хеширования должен выдавать уникальный результат для каждого входного значения.

Взлом хеша возможен только путем перебора всех возможных входных значений, пока не будет получен точно такой же хеш.

Хеширование — это процесс преобразования входных данных в фиксированную длину хеш-кода. Хеширование часто используется для защиты паролей и других конфиденциальных данных. Хеш-код может быть использован в сертификатах для проверки подлинности данных.

Примеры алгоритмов хеширования включают в себя MD5, SHA-1, Whirlpool и Blake 2. Они широко используются в различных приложениях для защиты конфиденциальности и обеспечения безопасности данных.

Еще термины по предмету «Информационная безопасность»

система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая информационную технологию выполнения установленных функций. Автоматизированная система в защищенном исполнении (АСЗИ) — автоматизированная система, реализующая информационную технологию выполнения установленных функций в соответствии с требованиями стандартов и/или нормативных документов по защите информации.

Аттестация автоматизированной системы в защищенном исполнении

процесс комплексной проверки выполнения заданных функций автоматизированной системы по обработке защищаемой информации на соответствие требованиям стандартов и/или нормативных документов в области защиты информации и оформления документов о ее соответствии выполнению функции по обработке защищаемой информации на конкретном объекте информатизации.

Защита информации от непреднамеренного воздействия

деятельность по предотвращению воздействия на защищаемую информацию ошибок пользователя информацией, сбоя технических и программных средств информационных систем, а также природных явлений или иных нецеленаправленных на изменение информации воздействий, связанных с функционированием технических средств, систем или с деятельностью людей, приводящих к искажению, уничтожению, копированию, блокированию доступа к информации, а также к утрате, уничтожению или сбою функционирования носителя информации.

Смотреть больше терминов

Работа СКЗИ и их применение

Работа средств защиты криптографической информации основана на следующих принципах:

Основными функциями средств защиты криптографической информации (СКЗИ) являются:

Криптографическая защита информации и персональных данных является неотъемлемой частью любой информационной деятельности. В данный момент на рынке представлено множество средств для решения этой задачи. Среди них КриптоПро CSP, Signal-COM CSP, РуТокен ЭЦП и некоторые другие программы, рассмотренные в данном материале.

Область создания и применения СКЗИ находится под непосредственным контролем ФСБ РФ и ФСТЭК — любая информационная система согласовывается с этими органами.

Симметричное шифрование

В симметричных алгоритмах шифрования один и тот же ключ K используется для того, чтобы зашифровать сообщение и для его последующей расшифровки.

Таким образом, и отправитель и получатель сообщения должны располагать одним и тем же ключом. Схематично это можно записать в виде:

M’ = E(M, K)

M = D(M’, K),

где Е — функция шифрования (encrypt), а D — функция дешифрования (decrypt), обе используют ключ K в качестве одного из параметров.

Исторически симметричное шифрование появилось первым. Более того, до середины XX века это была единственная разновидность шифрования. Симметричные алгоритмы широко применяются и в настоящее время.

Далее мы рассмотрим ряд простых алгоритмов симметричного шифрования, на примере которых легко проанализировать такие их характеристики, как устойчивость к различным видам криптоанализа, а также некоторые базовые принципы криптографии. Затем будут рассмотрены алгоритмы, используемые в современных информационных системах.

Все алгоритмы симметричного шифрования можно разделить на три класса:

Организация криптографической защиты информации в коммерческой деятельности со временем становится всё более важным этапом. Для изменения данных нужным образом применяются различные шифровальные средства: для документации (портативное исполнение сюда входит), засекречивания телефонных разговоров и радиопереговоров, шифрование передачи информации и телеграфных сообщений.

Для обеспечения секретности коммерческой тайны на отечественном и международном рынке применяются наборы профессиональных устройств шифрования и технические приборы криптозащиты телефонных разговоров и радиопереговоров, тайной переписки.

Помимо этого, сейчас довольно часто используются маскираторы и скремблеры, которые обрабатывают речевой сигнал и меняют его на цифровую передачу материалов. Система криптографической защиты информации применяется в установке безопасности на факсы, телексы и телетайпы. Эта же задача стоит перед шифраторами, имеющими вид встраиваемых устройств для факс-модемов, телефонов и других средств связи. Для уверенности в достоверности электронных сообщений используют цифровую подпись.


СРЕДСТВА КРИПТОГРАФИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ И КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

Защита криптографической информации в коммерческой деятельности

В России криптозащита обеспечивает целостность с помощью добавления конечной суммы или комбинации для проверки, которые помогают определить ту самую целостность. Так как модель криптографическая, ей необходим ключ. Как показала оценка информационной безопасности, криптозащита является самой безопасной, поэтому её применяют даже в государственных системах.

Перестановочные алгоритмы

В перестановочных алгоритмах символы открытого текста изменяют порядок следования в соответствии с правилом, которое определяется ключом.

Простейший пример перестановки: символы открытого текста не слева направо, а сверху вниз, при этом длина столбца ограничена. Результатом будет текст, выписанный по строкам.

Рис. 6. Простейший перестановочный шифр.

Такой шифр будет весьма уязвим к перебору ключей (в качестве ключа будет выступать длина столбца), поскольку ключ в любом случае не может быть длиннее, чем длина самого сообщения.

Рассмотрим более интересный пример: решетка Флейберга. Ключом к этому шифру является квадратная решетка, стороны которой содержат четное число ячеек. Четверть ячеек решетки вырезаются по следующему принципу: если некоторая ячейка вырезана, то нельзя вырезать те ячейки, в которые она переходит при повороте решетки на 90, 180 и 270 градусов.

Для того, чтобы зашифровать текст, решетка с прорезями накладывается на расчерченный квадрат, после чего буквы текста последовательно записываются в прорези. Когда все прорези заполнены, решетка поворачивается на 90 градусов, причем, согласно принципу построения решетки, прорези при этом окажутся на месте незаполненных ячеек. В прорези записывается продолжение текста, после чего рештка снова поворачивается и, таким образом, процедура повторяется еще два раза. Если текст не поместился в один квадрат, таким же образом заполняется следующий. Оставшиеся пустыми ячейки последнего квадрата заполняют случайными символами.

Рис. 7. Пример шифрования с помощью решетки Флейберга

Шифр Флейберга, очевидно, уязвим к криптоанализу с известным открытым текстом, причем для двоичного алфавита эта уязвимость значительно меньше, чем для естественно-языковых алфавитов.

Области использования электронной подписи

От пользователя может быть нужен как базовый сертификат, так и квалифицированный, в котором содержится специальный идентификатор. Квалифицированная электронная цифровая подпись отличается повышенной защищенностью.

Электронная отчетность. Это одна из главных сфер, где используется электронная подпись. При этом имеется в виду отчетность, которая предоставляется в различные государственные структуры: ФСС, ПФР, ФНС и прочие. При отправке документов требуется квалифицированный сертификат ЭП, который предоставляется уполномоченному сотруднику организации.

Системы госзакупок для различных бюджетных организаций. Они проводятся посредством аукционов, где требуется квалифицированная ЭП (на основании ФЗ-44 от 14.07.22) для подписания контрактов и прочих действий.

Электронный документооборот между компаниями (в случае подписания счет-фактуры). Здесь юридическую силу документа также гарантирует только квалифицированная ЭП.

На этом список применения ЭП не заканчивается: она также требуется для работы с порталами госструктур, таких как РКН, Госуслуги, Единый федеральный реестр сведений о банкротстве, Росимущество и прочих.

Виды СКЗИ для электронной подписи — программные и аппаратные СКЗИ

Описание принципа работы криптографической защиты информации включает использование электронной подписи (ЭП) , которая является специальным реквизитом документа.

Это позволяет подтвердить принадлежность документа определенному владельцу, а также отсутствие внесения изменений с момента его создания. Э П можно сравнить со средневековой восковой печатью, которая ставилась на важные письма.

Существует два типа программ, применяемых при криптографической защите информации: отдельно устанавливаемые и встроенные в устройство. К отдельно устанавливаемым программам относятся КриптоПро CSP, Signal-COM CSP и VipNet CSP.

Они сертифицированы в соответствии с актуальными ГОСТами и работают с основными операционными системами. Однако их основным недостатком является необходимость платить за приобретение лицензии для каждого нового устройства.

К программам, встроенным в устройство, относятся Рутокен ЭЦП, Рутокен ЭЦП 2.0 и JaCArta SE. Используя этот тип СКЗИ, пользователь решает главную проблему предыдущего класса. Здесь устройству достаточно иметь доступ к сети, так как процесс шифрования и дешифрования производится внутри носителя.

Правовое регулирование применения криптографических средств в РФ

Основным регулирующим документом является ФЗ-149. Однако он по большей части определяет участников процесса и их действия. Самим же объектом взаимодействия являются персональные данные пользователей — любая информация, относящаяся прямо или косвенно к определенному физическому лицу. Положения о персональных данных, в том числе общедоступных персональных данных, оговорены в ФЗ-152.

Храните данные в соответствии с 152-ФЗ.

Этими законами определяется, что проводимые действия должны быть реализованы в данных подсистемах:

Также вся деятельность, связанная с оказанием  услуг в сфере криптографической защиты, подлежит лицензированию, которая осуществляется ФСБ РФ. К требованиям лицензирования относится следующее:

К СКЗИ относятся следующие средства:

Некоторые СКЗИ бывают выведены из-под лицензирования. В их числе средства, применяемые для ИП или для собственных нужд юридических лиц. Подробнее об этом можно узнать непосредственно в ФЗ.

Повышай знания с онлайн-тренажером

Современные алгоритмы симметричного шифрования используют как подстановку, так и перестановку. Стандартом де-факто являются несколько раундов шифрования с разными ключами, которые генерируются на основе одного общего ключа. Большинство современных алгоритмов имеют структуру, аналогичную структуре шифра Файстеля, разработанного в 1973 году.

Шифр Файстеля создавался как пример практической реализации идеи Клода Шеннона: надежный алгоритм шифрования должен удовлетворять двум свойствам: диффузии и коффузии.

Диффузия — каждый бит открытого текста должен влиять на каждый бит зашифрованного текста. Суть диффузии заключается в рассеянии статистических характеристик открытого текста внутри шифрованного текста.

Конфузия — отсутствие статистической взаимосвязи между ключом и зашифрованным текстом. Даже если противник определит какие-то статистические особенности зашифрованного текста, их должно оказаться недостаточно, чтобы получить любую информацию о ключе.

Рассмотрим структуру шифра Файстеля.

Данный шифр относится к категории блочных. Блочные шифры предназначены для шифрования небольших блоков определенной длины. Для того, чтобы зашифровать произвольный текст, его необходимо разбить на блоки, после чего каждый блок зашифровывается отдельно (вариации рассматриваются в следующем разделе). Кроме того, как и практически все современные алгоритмы, шифр Файстеля работает с двоичным алфавитом (т.е. и открытый и зашифрованный текст представлены последовательностью битов) и предназначен для реализации на ЭВМ.

На вход алгоритма шифрования подается блок открытого текста, имеющий четную длину 2l и ключ K. Блок разделяется на две равные части — правую R0 и левую L0. Далее эти части проходят m раундов обработки, после чего снова объединяются в зашифрованный текст.

Каждый i-й раунд состоит в генерации подключа Ki (на основе общего ключа K) и применении к блоку Ri некоторого зависящего от ключа преобразования F. Результат складывается с блоком Li с помощью операции XOR (исключающее или) и получается блок Ri+1. Блок Ri без изменений берется в качестве блока Li+1.

Процесс дешифрования принципиально ничем не отличается, но на вход подается зашифрованный текст, а ключи Ki вычисляются в обратном порядке.

Рис. 8. Схема i-го раунда шифрования шифра Файстеля

Алгоритм DES

Долгое время самым популярным алгоритмом симметричного шифрования являлся DES (Data Encrypting Standart), принятый в 1977 году. Этот алгоритм базируется на структуре шифра Файстеля с размером блока 64 бита и 56-битным ключом.

Функция раунда F использует набор из восьми так называемых S-матриц. Каждая матрица состоит из 4 строк, причем каждая строка представляет собой перестановку чисел от 0 до 15 (соответственно, 16 столбцов). Матрицы жестко заданы7. Каждая матрица получает на вход шесть бит и выдает четырехбитовый результат. Первый и последний бит входного значения задают строку матрицы, а четыре остальных — столбец. Двоично представление числа, находящегося на их пересечении, и будет результатом преобразования. Собственно же преобразование F заключается в следующем:

Долгое время DES являлся федеральным стандартом шифрования США. Этот алгоритм показывает хороший лавинный эффект (изменение одного бита открытого текста или ключа приводит к изменению многих битов зашифрованного текста) и успешно противостоял многолетним попыткам взлома. Однако длина ключа в 56 битов при возросшей производительности ЭВМ сделала шифр потенциально уязвимым к перебору ключей, поэтому в 1997 году был объявлен конкурс на новый алгоритм, который должен был стать криптостандартом на ближайшие 10-20 лет.

Алгоритм AES

Победитель конкурса был определен в 2000 году — им стал бельгийский шифр RIJNDAEL, который был переименован в AES (Advanced Encryption Standard). Он является нетрадиционным блочным шифром, поскольку не использует сеть Фейштеля. Каждый блок входных данных представляется в виде двумерного массива байт ( 4х4, 4х6 или 4х8 в зависимости от размера блока, которая может варьироваться). В зависимости от размера блока и длины ключа алгоритм содержит от 10 до 14 раундов, в каждом из которых проводится ряд преобразований — либо над независимыми столбцами, либо над независимыми строками, либо вообще над отдельными байтами в таблице.

Среди других современных алгоритмов симметричного шифрования следует назвать шифры IDEA, Blowfish, RC5, CAST-128.

Принцип работы средств защиты криптографической информации заключается в следующем:

Основными функциями средств (СКЗИ) являются:

Правовое регулирование криптографической защиты информации в РФ

Криптографические системы защиты информации в России контролируются государством. Криптография координируется документом «Об утверждении положений о лицензировании отдельных видов деятельности, связанных с шифровальными (криптографическими) средствами» принятым Правительством Российской Федерации. Исходя из него, обязательно нужна лицензия на шифровальные средства и их техническое обслуживание.


СРЕДСТВА КРИПТОГРАФИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ И КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

Правовое регулирование криптографической защиты информации

К тому же, шифрование на заказ, разработка средств криптографической защиты информации также находятся под контролем государства. Чтобы заниматься подобным, надо получить специальное разрешение.

Приказ ФСБ России от 9 февраля 2005 г. N 66 «Об утверждении положения о разработке, производстве, реализации и эксплуатации шифровальных (криптографических) средств защиты информации (положение пкз-2005)» указывает порядок разработки и применения средств шифрования.

На данный момент в стране действует закон, согласно которому установлен порядок создания и использования криптографических методов.

Указ Президента РФ от 3 апреля 1995 года запретил государственным структурам эксплуатировать криптографические средства защиты информации и зашифрованные технические устройства для хранения, изменения и отправки данных, если они не лицензированы агентством правительственной связи.

Электронная подпись (ЭП) – это специальные реквизиты документа, позволяющие подтвердить принадлежность определенному владельцу, а также отсутствие факта внесения изменений в документ с момента его создания. Э П можно сравнить со средневековой восковой печатью, ставившейся на важные письма.

На данный момент существуют два вида средств, применяемых при криптографической защите информации: отдельно устанавливаемые программы и встроенные в устройство.

К первому типу относятся следующие программы:

Они работают с основными ОС и сертифицированы в соответствии с актуальными ГОСТами. Основным их минусом является лицензирование: придется платить деньги за приобретение лицензии для каждого нового устройства.

К вшитым в устройство программам относятся:

Используя данный тип СКЗИ, пользователь решает главную проблему предыдущего класса. Здесь устройству достаточно иметь доступ к сети, так как процесс шифрования и дешифровки производится внутри носителя. Основным правовым фактором, регулирующим деятельность в этой сфере, является ФЗ-63, подробнее о котором можно прочитать здесь.

Сертифицированные криптографические средства защиты информации в России

Сертификацией средств защиты информации занимается Федеральная служба безопасности России. Криптографические СЗИ определены в следующие классы:

Класс КС1

Средства этого класса могут оказывать сопротивление внешним атакам, которые реализуются методами, неизвестными криптоаналитикам. Данные о системах, использующих средства класса КС1 находятся в общем доступе.

Класс КС2

К рассматриваемой категории относятся криптографические инструменты защиты данных, способные препятствовать атакам за пределами зоны контроля, блокируемым СЗИ класса КС1. При этом атакующие могли получить информацию о физических мерах безопасности данных и пр.

Класс КС3

Средства этой категории могут противодействовать атакам, имея физический доступ к компьютерным системам с установленными криптографическими методами защиты.

КВ1 и КВ2

Средства группы КВ обладают свойством сопротивления атакам, созданным криптоаналитиками и прошедшим лабораторные испытания.

Класс КА

Инструменты данного класса способны защитить от атак, которые разрабатывались с применением знаний о недокументированных возможностях вычислительных систем и конструкторской документацией, а также с доступом к любым компонентам СЗИ.

Целью цифровых подписей является аутентификация и проверка подлинности документов и данных. Это необходимо, чтобы избежать цифровой модификации (подделки) при передачи официальных документов.

Как правило, система с асимметричным ключом шифрует с помощью открытого ключа и расшифровывает с помощью закрытого ключа. Однако порядок, шифрующий ЭП, обратный. Цифровая подпись шифруется с помощью закрытого ключа, а расшифровывается с помощью открытого. Поскольку ключи связаны, расшифровка с помощью открытого ключа подтверждает, что для подписания документа был использован соответствующий закрытый ключ. Так проверяется происхождение подписи.


СРЕДСТВА КРИПТОГРАФИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ И КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

На изображении выше показан весь процесс — от подписания ключа до его проверки.

Рассмотрим каждый шаг подробнее:

Существует два стандартных для отрасли способа реализации вышеуказанной методологии: алгоритмы RSA и DSA. Оба служат одной и той же цели, но функции шифрования и дешифровки довольно сильно отличаются.

Что такое алгоритм RSA?

Алгоритм RSA — это алгоритм подписи с открытым ключом, разработанный Роном Ривестом, Ади Шамиром и Леонардом Адлеманом. Статья с описанием алгоритма была впервые опубликована в 1977 году. Он использует логарифмические функции для того, чтобы работа была достаточно сложной, чтобы противостоять перебору, но достаточно упрощенной, чтобы быть быстрой после развертывания. На изображении ниже показана проверка цифровых подписей по методологии RSA.


СРЕДСТВА КРИПТОГРАФИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ И КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

RSA также может шифровать и расшифровывать общую информацию для безопасного обмена данными наряду с проверкой цифровой подписи. На рисунке выше показана вся процедура работы алгоритма RSA.

Что такое алгоритм DSA?

Алгоритм цифровой подписи — это стандарт FIPS (Федеральный стандарт обработки информации) для таких подписей. Он был предложен в 1991 году и всемирно стандартизирован в 1994 году Национальным институтом стандартов и технологий (NIST). Алгоритм DSA обеспечивает три преимущества:


СРЕДСТВА КРИПТОГРАФИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ И КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

На рисунке выше показана работа алгоритма DSA. Здесь используются две различные функции — функция подписи и функция проверки. Разница между изображением типичного процесса проверки цифровой подписи и изображением выше заключается в части шифрования и дешифровки.

Оцените статью
ЭЦП64
Добавить комментарий